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Brain-derived neurotrophic factor (BDNF) plays a cru-
cial role for the survival of visceral sensory neurons
during development. However, the physiological
sources and the function of BDNF in the adult viscera
are poorly described. We have investigated the cellu-
lar sources and the potential role of BDNF in adult
murine viscera. We found markedly different
amounts of BDNF protein in different organs. Surpris-
ingly, BDNF levels in the urinary bladder, lung, and
colon were higher than those found in the brain or
skin. In situ hybridization experiments revealed that
BDNF mRNA was made by visceral epithelial cells,
several types of smooth muscle, and neurons of the
myenteric plexus. Epithelia that expressed BDNF
lacked both the high- and low-affinity receptors for
BDNF, trkB and p75NTR. In contrast, both receptors
were present on neurons of the peripheral nervous
system. Studies with BDNF2/2mice demonstrated
that epithelial and smooth muscle cells developed
normally in the absence of BDNF. These data provide
evidence that visceral epithelia are a major source,
but not a target, of BDNF in the adult viscera. The
abundance of BDNF protein in certain internal organs
suggests that this neurotrophin may regulate the
function of adult visceral sensory and motor neurons.
(Am J Pathol 1999, 155:1183–1193)

Brain-derived neurotrophic factor (BDNF) supports the
survival, differentiation, and function of a broad number

of central nervous system (CNS) and peripheral nervous
system (PNS) neurons.1 The tyrosine kinase trkB was
identified as the high-affinity receptor and p75NTR as the
low-affinity receptor for BDNF.2,3 Initially, BDNF expres-
sion was thought to be restricted to the CNS.4 Barde and
colleagues, however, showed that sub-populations of
sensory neurons are BDNF responsive during develop-
ment.5–7 Studies with BDNF knockout (2/2) mice defin-
itively demonstrated a crucial role of BDNF for the sur-
vival of developing PNS neurons. BDNF2/2 mice display
an extensive loss of visceroafferent neurons in the no-
dose (70%), trigeminal (40%), and dorsal root ganglia
(30%).8–11 These mice develop sensory deficits, severe
respiratory problems, and abnormalities in feeding and
behavior and die within 3 weeks after birth.9,12

Though there is good evidence for the fundamental
role of target-derived BDNF for the development of vis-
ceral innervation,13,14 the role of target-derived BDNF for
adult visceral neurons is rather unknown. Recently, it has
been observed that inflammatory diseases of the adult
viscera are associated with a strong increase in local
BDNF mRNA and protein production.15–17 These obser-
vations raised the possibility that BDNF might mediate
changes in neuronal function in pathological conditions,
in that there is growing evidence for a functional role for
BDNF in the normal adult peripheral nervous sys-
tem.18–21 The involvement of target-derived mechanisms
has been suggested, because there is recent evidence
for retrograde transport of BDNF in adult visceroafferent
and visceroefferent neurons.22 This is supported by the
finding that there are many more neurons in the adult
nodose and petrosal ganglion (NPG) and (DRG) that
contain BDNF protein than produce BDNF mRNA.23,24

Though target-derived actions of BDNF in the adult vis-
cera have been discussed, a systematic study of BDNF
expression in the viscera is still lacking. Moreover, most
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reports do not identify the cellular sources of BDNF.
There is some evidence for the presence of BDNF mRNA
in extracts from the lung, heart, and spleen25–27 and of
BDNF protein in extracts of the rat liver and thymus.28 As
possible physiological sources of BDNF, only fibro-
blasts,29–31 vascular smooth muscle cells,32,33 and thy-
mic stroma cells have been identified so far.34

It was the aim of this study, therefore, to investigate
systematically the expression and potential role of BDNF
in the targets of adult visceral sensory and motor neu-
rons. Using a nonradioactive in situ hybridization tech-
nique, which gives very good cellular resolution, we iden-
tified the cells synthesizing BDNF mRNA in all
gastrointestinal regions and in tissues of the cardiorespi-
ratory and urogenital systems. In addition, we quantified
the amounts of BDNF protein present in these internal
organs. Furthermore, we have examined the distribution
of BDNF receptors and the morphology of viscera in mice
lacking BDNF. We found that BDNF is expressed in cer-
tain viscera in even higher amounts than in the brain. The
distribution of BDNF receptors and the phenotype of
BDNF2/2 mice suggest a primarily neurotrophic role for
BDNF made by visceral epithelia. We conclude that vis-
ceral BDNF could indeed regulate functional properties
of adult PNS neurons.

Materials and Methods

Animals

Female Balb/c mice were obtained from Harlan-Winkel-
mann (Borchen, Germany). FVB/N transgenics were
genotyped by polymerase chain reaction (PCR) analysis
as described before.35,36 Wild-type and BDNF2/2 mice
were obtained from the mating of BDNF1/2 mice main-
tained at the Max Delbrück Centrum, Berlin. The produc-
tion and maintenance of these mice have been described
elsewhere.21 Paraffin sections (2 mm) of internal organs
from 2-week-old wild-type (1/1) and BDNF2/2 mice
were stained with hematoxylin-eosin (HE) following stan-
dard laboratory procedures.

In Situ Hybridization (ISH)

The riboprobe for BDNF was prepared as described by
Schaeren-Wiemers and Gerfin-Moser.37 Briefly, for in vitro
transcription 1 mg of linearized plasmid containing 510
bp of the BDNF coding sequence (nucleotides 224–734)
was used as a template.38 The reaction was performed in
a 50-ml volume using the DIG-RNA-labeling mix from
Boehringer Mannheim (Mannheim, Germany) and a T7
(anti-sense) or T3 (sense control) polymerase (Promega,
Madison, WI). After a 3-hour incubation the reaction was
stopped by adding DNase. The probe was hydrolyzed by
adding two volumes of carbonate buffer (60 mmol/L
Na2CO3, 40 mmol/L NaHCO3, pH 10.2) followed by 45
minutes’ incubation at 60°C. After neutralization with an
equal volume of neutralization buffer (200 mmol/L Na-
acetate, 1% acetic acid, pH 6.0), the probe was purified
by ethanol precipitation. To estimate the concentration of

the probe a dot blot was performed as recommended by
the manufacturer (Boehringer Mannheim) for nonradioac-
tive ISH. Probes were stored at 280°C.

Organs from 8-week-old Balb/c mice were immediately
frozen in Tissue Tek (Miles, Elkhart, IN). Slides were
coated with 2% APES (3-Aminopropyltriethoxysilane,
Sigma, Deisenhofen, Germany) in Aceton under RNase-
free conditions. Ten-micron cryosections were dried for
30 minutes, fixed in 4% cold paraformaldehyde for 10
minutes, and then washed in RNase-free PBS. Two se-
quential sections of each organ were used for anti-sense
and sense staining. After acetylation, sections were
washed in PBS. For prehybridization, 500 ml of hybridiza-
tion buffer (50% formamide, 43 SSC, 23 Denhardt’s
solution, 50 mg/ml RNA-core from baker’s yeast) were
added to each slide. The slides were placed in a humid
chamber containing a 50% formamide/43 SSC mix at the
bottom. The hybridization mixture was prepared by add-
ing 150 ng/ml digoxigenin (DIG)-labeled cRNA (anti-
sense or sense) to the hybridization buffer. To denature
the probe the mixture was incubated at 85°C for 5 min-
utes. The prehybridization solution was allowed to drip off
the slides, and 200 ml of hybridization mixture were
added to each slide. Hybridization was performed over-
night at 56°C. Posthybridization washes were carried out
in the following sequence: 43 10 minutes in 23 SSC at
67°C, 45 minutes in 23 SSC at 67°C, 60 minutes in 0.13
SSC at 67°C, 10 minutes in 0.23 SSC at room tempera-
ture. Detection of the DIG-labeled probe was performed
as described in the manufacturer’s instructions, with an-
tibody incubation overnight at 4°C. Color development
was allowed to proceed in the dark for 2 hours. The
reaction was terminated by immersing the slides in PBS,
pH 7.5.

Preparation of Tissue Lysates

Organs from 8-week-old Balb/c mice were prepared and
pulverized in liquid nitrogen. The lysing buffer contained
50 mmol/L Tris, pH 8.0, 150 mmol/L NaCl, 1 mmol/L
EDTA, 1 mmol/L phenylmethylsulfonylfluoride, 5 mmol/L
Iodacetamid, 10 mg/ml aprotinin, and (as detergents)
0.2% SDS, 1% Triton X-100, and 1% Igepal (Sigma).
Protein extraction was performed as described before.39

The lysing solutions were centrifuged at 2000 3 g, 4°C,
for 30 minutes and supernatants stored at 280°C. Total
protein content was measured using the detergent-com-
patible BCA protein assay (Pierce, Rockford, IL).

Determination of BDNF Protein by Enzyme-
Linked Immunosorbent Assay (ELISA)

BDNF in lysates was measured using commercial ELISA
kits according to the manufacturer’s instructions (Pro-
mega) as described.17 The detection limit was 4 pg/ml.
Measurements were performed in duplicate. Concentra-
tions of BDNF were calculated as nanograms of BDNF
per gram of total protein.
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trkB and p75NTR Immunoreactivity

Immunoreactivity against the full-length form of mouse
trkB (gp 145) was studied on acetone-fixed cryosections
(10 mm) of 8-week-old Balb/c mice internal organs using
rabbit antisera (Transduction Laboratories, Lexington,
KY) and TRITC-conjugated goat anti-rabbit IgG as the
secondary antibody, as described before.40,41 Sections
were counterstained by Hoechst 33342 (Sigma, St. Louis,
MO; 10 mg/ml in TBS, 30 minutes) for identification of cell
nuclei as described.42 For detection of p75NTR immuno-
reactivity, APAAP-staining was performed as described
elsewhere,43 using a monoclonal rat anti-mouse p75NTR

primary antibody (Chemicon, Temecula, CA). Sections
were counterstained with haemalaun. Incubation of inter-
nal organ cryosections without primary antibody was
used as a negative control in both experiments. Slides
were studied using a fluorescence Zeiss Axioscope micro-
scope and photodocumented using a digital image analy-
sis system (ISIS Metasystem, Altlussheim, Germany).

Specificity Control

The heart of BDNF-overexpressing mice (FVB/N, alpha-
myosin heavy-chain promoter36) and BDNF2/2 knock-
out mice served as a positive and negative control for
ELISA and ISH. Transgenic heart lysates showed 20-fold
higher concentrations of BDNF (583.3 6 151.8 ng
BDNF/g total protein) than FVB/N wild-type heart lysates
(30.5 6 3.7 ng/g), whereas BDNF was not detectable in
heart lysates of BDNF knockouts. ISH revealed a strong
and ubiquitous BDNF mRNA staining in cardiomyocytes
of BDNF overexpressors. Wild-type hearts displayed dis-
tinct BDNF mRNA-positive cardiomyocytes, BDNF2/2
hearts were completely BDNF mRNA-negative (not
shown). BDNF levels in back skin lysates (telogen) of
Balb/c mice ranged at 8.5 6 2.1 ng/g (Figure 1A), con-
centrations of BDNF in total brain lysates at 5.9 6 1.5
ng/g, according to reported data.38

Results

Gastrointestinal Tract

In the gastrointestinal tract, the BDNF protein content
differed markedly between organs (Figure 1B). High con-
centrations of BDNF were detected in the colon and
duodenum, low concentrations in the ileum. In the liver
and pancreas, BDNF levels were comparable to those
measured in the total brain (Figure 1A). In contrast, the
submandibular gland contained very low concentrations
of BDNF. In order to identify the cellular sources of BDNF,
mRNA expression was examined with nonradioactive ISH
(Table 1). The internal circular muscle layer of the tunica
muscularis was BDNF mRNA positive throughout the in-
testine. In contrast, the outer longitudinal muscle layer
remained negative (Figure 2, colon). An exception was
the upper esophagus, where distinct muscle fibers of the
outer layer appeared positive (Figure 3, esophagus).
BDNF expression was detected in epithelia throughout

the intestinal tract (Table 1). Intense signals were ob-
served on the bottom of the crypts or of gastric foveolae,
respectively. Expression levels appeared to be lower
toward the apical cell layers (Figure 2, colon and stom-
ach). Prominent BDNF expression was observed in epi-
thelia of the colon (Figure 2, colon), in contrast, only weak
expression was seen in the ileum. Ganglia of the myen-
teric plexus were BDNF mRNA positive throughout the
intestine (arrow in Figure 2, colon). BDNF mRNA was
detectable in the peritoneal cell layer of the intestine as
on other internal organs (Figure 3, peritoneum). In the
liver, hepatocytes were identified as the main sources of
BDNF mRNA (Figure 2, liver). Epithelia of exocrine ducts
remained unstained in all examined glands (Table 1).

Cardiorespiratory System

A striking pattern of BDNF mRNA-expressing cells was
observed in the lung. Respiratory epithelium was strongly
BDNF mRNA positive from trachea up to the bronchioli.
Airway smooth muscle cells as well as smooth muscle
cells of pulmonary vessels (Table 1) were moderately
positive (Figure 3, lung). This expression pattern was
mirrored in the very high BDNF content measured in
lysates taken from lung (Figure 1A). The BDNF protein

Figure 1. BDNF protein concentrations in internal organ lysates. BDNF
protein concentrations in total organ lysates of 8-week-old Balb/c mice were
measured by ELISA and calculated as nanograms of BDNF per gram of total
protein. Shown are the means with each standard deviation (n 5 4). A:
BDNF protein in the total brain, back skin and cardiorespiratory system. B:
BDNF protein in the gastrointestinal tract. C: BDNF protein in the urogenital
tract.
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contents found in the heart were significantly lower than
those found in the lung. ISH showed that only a few
cardiomyocytes were BDNF mRNA-positive (Table 1).

Urogenital Tract

BDNF protein levels in the kidney were comparable to
those found in the brain. In contrast, lysates taken from
the urinary bladder revealed a much higher concentra-
tion of BDNF (Figure 1C). BDNF protein was also detect-
able in the urine (24.98 6 14.78 pg/ml), though serum
levels were below the detection limit (,4 pg/ml). BDNF
protein levels in the oviduct were significantly higher than
in the uterus (Figure 1C). For the identification of cellular
BDNF expression, BDNF mRNA was detected by ISH.
Proximal and distal tubules of the kidney displayed
strong BDNF expression. No expression was observed in
glomerula (Figure 2, kidney). Renal vascular smooth
muscle cells appeared to be BDNF mRNA negative (not

shown). Urothelia of the urinary bladder revealed very
strong BDNF expression. In contrast, the tunica muscu-
laris was BDNF mRNA-negative (Figure 3, bladder).
BDNF mRNA was found in epithelia of the uterus and
oviduct. There was also a light expression in adjacent
cells of the lamina propria (Figure 3, tuba uterina). Inter-
estingly, BDNF mRNA was not detectable in the squa-
mous epithelium of the portio vaginalis uteri (Figure 3,
cervix uteri).

trkB and p75NTR Immunoreactivity (IR)

The strong BDNF expression in visceral epithelia raised
the question whether BDNF could also play an autocrine
role for non-neuronal structures in the adult viscera. How-
ever, almost all epithelia in the examined internal organs
were both trkB-IR and p75NTR-IR-negative (Table 1). Ar-
rowheads in Figure 4 (colon) show epithelial structures of
the transverse colon, which are negative for trkB-IR and

Table 1. BDNF Expression and BDNF Receptors in Internal Organs

Organ Compartment BDNF mRNA trkB-IR p75NTR-IR

Submand. gland acini 1 2 2
ducts 2 2 2

Sublingual gland acini and ducts 2 2 2
Esophagus squamous epithelium 1 2 2

tunica muscularis 1/2 1/2 2
myenteric plexus 11 11 11

Stomach foveolae gastricae 1 2 2
gastric glands 11 2 2
tunica muscularis 1/2 2 2
myenteric plexus 11 11 11

Duodenum epithelium 111 2 2
tunica muscularis 1/2 2 2
myenteric plexus 11 11 11

Ileum epithelium 1 2 2
tunica muscularis 1/2 2 2
myenteric plexus 11 11 11

Colon epithelium 111 2 2
tunica muscularis 1/2 2 2
myenteric plexus 11 11 11

Lung respiratory epithelium 111 2 2
airway smooth
muscle

11 2 2

blood vessels 11 2 2
Heart cardiomyocytes 11/2 2 2
Liver hepatocytes 11 2 2

portal triad 2 2 2
Pancreas exocrine glands 111 2 2

exocrine ducts 2 2 2
islet cells 1 2 2

Kidney tubules 111 2 2
thin segments 1 2 2
glomerula 2 2 2

Oviduct columnar epithelium 11 2 2
lamina propria 1 2 111
tunica muscularis 2 2 11

Uterus columnar epithelium 11 2 2
lamina propria 1 2 111
myometrium 2 2 11

Portio vaginalis squamous epithelium 2 11 2
Bladder urothelium 111 2 2

tunica muscularis 2 2 2

BDNF mRNA was detected in internal organ cryosections of 8-week-old Balb/c mice by ISH, trkB-IR, and p75NTR-IR by immunohistochemistry (see
Material & Methods). The intensity of staining is expressed in arbitrary units. 2, no staining; 1, light staining; 11, moderate staining; 111, strong
staining; 1/2, stained and unstained portions in the same compartment. trkB-IR, trkB immunoreactivity; p75NTR-IR, p75NTR immunoreactivity.
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Figure 2. BDNF expression in internal organs. Detection of BDNF mRNA was performed on 10-mm cryosections by ISH. Sequential sections were hybridized with
anti-sense or sense riboprobes, respectively. Shown are the cortex of the kidney, a liver lobe with central vein, mucosa and tunica muscularis of the stomach, and
sigmoid colon. Note the BDNF mRNA negative glomerula in the kidney. The arrow in the micrograph of the colon shows a BDNF mRNA-positive ganglion of the
myenteric plexus. Scale bar, 27 mm. L, lumen; CV, central vein; G, glomerulum; SM, smooth muscle; BM, basal membrane and submucosa of the stomach.
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Figure 3. BDNF expression in visceral ep-
ithelia. Sequential cryosections were hy-
bridized with anti-sense and sense ribo-
probes. The first slide of each set was
stained with hematoxylineosine (HE).
Shown are the mucosa and tunica muscu-
laris of the upper part of esophagus, of a
medium-sized bronchus in the lung, of the
urinary bladder, the squamous epithelium
on the portio vaginalis uteri, mucosa and
submucosa of the oviduct, and the perito-
neal serosa layer on the myometrium mus-
cle. Arrows indicate the basal membrane of
the epithelia. Note that also adjacent stroma
cells in the oviduct appear BDNF mRNA-
positive. On the negative myometrium
background, peritoneal BDNF mRNA sig-
nals are easily to identify by blue staining in
the peritoneum. Scale bar, 13.5 mm. L, lu-
men; A, airway; C, peritoneal cavity.
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p75NTR-IR. An exception was the squamous epithelium of
the portio vaginalis uteri, which was trkB-IR-positive (red
fluorescence), but p75NTR-IR-negative (arrowheads in
Figure 4, cervix uteri). Most smooth muscle layers ap-
peared to possess neither trkB nor p75NTR receptors
(Figure 4, colon). However, prominent p75NTR-IR was
detected in the tunica muscularis of the oviduct and in the
myometrium (Table 1). Strongest p75NTR-IR was revealed
in the lamina propria underneath the epithelia of the
uterus and oviduct, probably representing connective
tissue cells. Figure 4, cervix uteri, shows p75NTR-IR (red
staining) underneath the squamous epithelium of the por-
tio vaginalis uteri. Scattered trkB-IR was detectable in
muscle fibers of the upper esophagus (Table 1). Neurons
and nerve fibers of the myenteric plexus showed trkB-IR
as well as p75NTR-IR (Table 1). White arrows in Figure 4,

Colon show trkB-IR (red fluorescence), black arrows
p75NTR-IR (red staining) on myenteric neurons and nerve
fibers of the colon.

Internal Organs of BDNF2/2 Knockout Mice

To further analyze the role of BDNF for non-neuronal
structures of the viscera, we examined the viscera of
mice lacking BDNF. The morphology of internal organs of
2-week-old wild-type (n 5 4) and BDNF2/2 mice (n 5 4)
was examined using HE-stained 2-mm paraffin sections.
Throughout the gastrointestinal tract, the intestinal mu-
cosa was present and displayed no gross morphological
changes. However, the whole intestine appeared mark-
edly hypotrophic. The ileum and duodenum showed no

Figure 4. BDNF receptors in the colon and cervix uteri. Immunohistochemistry was performed against the full-length trkB and p75NTR receptors on 10-mm
cryosections of Balb/c mice internal organs. Sections were counterstained by Hoechst 33342 (blue fluorescence) for identification of cell nuclei (trkB) or by
haemalaun (p75NTR). Incubation of inner organ cryosections without primary antibody served as a negative control (not shown). trkB (red fluorescence) or
p75NTR staining (red APAAP staining) was evaluated in comparison to this background. Shown are sections of the portio vaginalis uteri and transverse colon.
Arrowheads in all figures indicate epithelia, arrows in the micrograph of colon neurons and nerve fibers of the myenteric plexus. Scale bar, 50 mm.
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reduction in mucosal thickness and a regular relation of
crypts and villi. The colon displayed a mucosal atrophy.
Goblet cells of the colon appeared enlarged, probably
due to a retention of mucus. Figure 5, colon shows the
wall of a wild-type and a BDNF2/2 transverse colon. The
morphology of pancreatic and hepatic epithelia was un-
altered; these organs appeared normal (not shown). Fur-
thermore, the BDNF2/2 lung and heart were indistin-
guishable from wild-type organs. Figure 5, lung, shows
the respiratory epithelium and airway smooth muscle of a
main bronchus. Epithelial and smooth muscle structures
in organs of the urogenital tract (kidney, uterus, oviduct,
urinary bladder) appeared unaltered in thickness and
morphology as well (not shown).

Discussion

In this study, we describe the expression of the neurotro-
phin BDNF in visceral organs using ELISA and a sensitive
nonradioactive ISH method that allows the identification
of the cell types that produce BDNF. The lack of both

BDNF receptors on these visceral cells is consistent with
previous data from human internal organs.44 On the other
hand, the presence of BDNF receptors on adult PNS
neurons innervating the viscera has been shown.23,45 In
addition, we have demonstrated the presence of BDNF
receptors on neurons of the adult enteric nervous system
(ENS). The uterus showed a unique receptor pattern
characterized by an expression of trkB in the squamous
epithelium of the portio and p75NTR in smooth muscle and
connective tissue cells. Strikingly, these structures ap-
peared BDNF mRNA-negative. Thus, non-neuronal cells
of the viscera showed a reciprocal expression pattern of
either BDNF or trkB or p75NTR. Since BDNF2/2 mice
exhibit normal epithelial and smooth muscle architecture,
but severe deficits in visceral innervation, regulation of
neuronal function may be the predominant role of BDNF
produced in the viscera.

In the last few years, BDNF mRNA expression has
been reported in various gustatory and olfactory sensory
epithelia46–48 and in epithelial cells of the cochlea and
vestibulum.49–52 These sensory epithelia represent inner-

Figure 5. Epithelia of BDNF2/2 mice. Two-micron paraffin sections of 2-week-old wild-type and BDNF2/2 mice internal organs were HE-stained following
standard laboratory procedures. Shown are sections of the transverse colon wall and respiratory epithelium and airway smooth muscle of a main bronchus of
wild-type and BDNF2/2 mice. Note the mucosal atrophy and enlarged goblet cells (GC) in the BDNF2/2 colon. Lungs were indistinguishable between wild-type
and BDNF2/2 mice; the respiratory epithelium was unaltered in morphology and height. Scale bar, 13.5 mm. L, lumen; A, airway; GC, goblet cells; SM, smooth
muscle.
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vation targets for neuronal populations, which were re-
ported to be dependent on BDNF. Visceroafferent neu-
rons of internal organs, which are mainly located in the
nodose/petrosal ganglion (NPG) and dorsal root ganglia
(DRG), were shown to require BDNF during develop-
ment.9,10 Recently, it has been shown that during normal
development BDNF is transiently expressed at high lev-
els in the targets of arterial baroreceptive and chemore-
ceptive sensory neurons that have their cell bodies in the
NPG.13 This expression is coordinated with the arrival of
sensory axons in these targets.13 In addition, the onset of
trkB expression in neurons of the NPG has been shown to
correlate with the onset of BDNF expression in peripheral
targets of NPG neurons.14,27 In the adult animal, retro-
grade transport of BDNF was recently demonstrated by
neurons with their axons in the vagus nerve.22 A small
number of these neurons had their cell bodies in the
NPG, but many motoneurons with their cell bodies in the
brainstem also retrogradely transported radiolabeled
BDNF. Thus, although the presence of trkB-expressing
NPG neurons in the adult animal has been disputed,23,53

motoneurons innervating the viscera appear to be able to
utilize endogenous target-derived BDNF.22 It is also not
in dispute that many adult sensory neurons innervating
the viscera with their cell bodies in the DRG possess trkB
receptors.23,45 The fact that more sensory neurons in the
adult NPG and DRG contain BDNF protein than produce
BDNF mRNA further support a role of retrogradely trans-
ported BDNF.23,24,54 The possible function of target-de-
rived BDNF in the adult animal is still relatively obscure,
although evidence does exist that this factor can influ-
ence the functional properties of mature sensory and
motoneurons.21,55 It may still be the case that BDNF is
required for the survival of adult neurons, but, as no
conditional knockouts have yet been described, this is-
sue is still open.

Information on BDNF’s role in the ENS is very limited.
Furthermore, there are conflicting data about trkB recep-
tor expression in human and rat enteric plexuses.56,57

The finding that BDNF receptors were identified only on
neuronal structures of the gut suggest that the observed
BDNF expression in epithelial and smooth muscle cells
could influence predominantly innervating neurons. Be-
cause there are no data available about the role of BDNF
in adult myenteric plexus neurons, both survival and non-
survival functions are conceivable. The examined
BDNF2/2 mice did not feed properly, as described else-
where.11 Though there was some food in the stomach,
the intestinal tract appeared nearly empty. Hence, the
hypotrophy of the whole intestine in BDNF2/2 mice is
most likely due to malnutrition. The marked reduction of
food intake is probably also the reason that the (com-
pletely empty) colon displayed a mucosal atrophy and
significant mucus retention in goblet cells.

BDNF levels in the lung and urinary bladder were 5- to
15-fold higher than in total brain lysates and even higher
than BDNF levels previously described in the hippocam-
pus.58 The levels of BDNF in the urinary bladder are, to
some extent, consistent with the finding that nearly all
adult afferents projecting through the pelvic nerve are
trkB-positive.45 However, the viscera is a relatively

sparsely innervated region in comparison to other so-
matic tissues.59 It is, therefore, surprising that the amount
of BDNF message and protein expressed by certain vis-
cera is so large compared to somatic tissues, eg, the
densely innervated skin. BDNF has been described as
playing a role in skin innervation.21,60–62 BDNF protein
levels in the skin, however, were significantly lower than
in certain inner organs (8 ng/g in the back skin versus,
e.g., 80 ng/g in the urinary bladder). It thus appears that,
at least in adults, visceral BDNF may also play a role in
the functional regulation of visceral motor and sensory as
well as possibly enteric neurons.18,63 There is recent
evidence demonstrating that BDNF can regulate the cap-
saicin sensitivity of adult visceral sensory neurons20 as
well as several functional properties of adult motoneu-
rons.18,19 Furthermore, it has been well established that
BDNF plays a nonsurvival role in CNS neurons.11 Hip-
pocampal neurons especially require BDNF for the ex-
pression of synaptic changes associated with long-term
potentiation (LTP).64,65 It is, therefore, conceivable that
BDNF, in contrast to developmental stages, could act
primarily on functional properties of PNS neurons.

Recent studies demonstrate that inflammatory dis-
eases of the adult viscera are associated with a local
up-regulation of BDNF mRNA and protein production.
Interestingly, these observations focus on inner organs
we found to be the predominant physiological sources of
BDNF in adult viscera (lung and urinary bladder). Allergic
asthmatic patients respond with a marked increase of
BDNF levels during inflammation in the lung after allergen
provocation.17 In a mouse model of allergic bronchial
asthma, we demonstrated that this local increase is due
at least in part to an up-regulation of BDNF mRNA pro-
duction in infiltrating immune cells, including macro-
phages and T cells.15 The production of BDNF in acti-
vated human immune cells has been demonstrated
recently.66 In addition, a strong local up-regulation of
BDNF mRNA was demonstrated in the inflamed urinary
bladder.16 It is well established that the closely related
nerve growth factor (NGF) contributes to the character-
istic neuronal changes in allergic bronchial asthma and in
cystitis. In animal models of these diseases, blocking of
NGF partly prevented neuronal changes which follow
inflammation.43,67 Therefore, a similar functional role of
locally produced BDNF has been suggested in inflam-
matory conditions. These observations indicate that
BDNF could mediate functional neuronal changes in
pathological conditions of the viscera, especially of the
lung and urinary bladder.

An additional novel finding is the p75NTR expression on
smooth muscle cells of the myometrium. A major role of
p75NTR has been postulated recently in myogenic differ-
entiation.68,69 These studies showed that NGF is capable
of stimulating myoblast proliferation and differentiation
via p75NTR. In addition, NGF and p75NTR down-regulation
was shown to be essential for the terminal myogenic
differentiation. The observed p75NTR-IR on the myome-
trium could, therefore, indicate the plasticity and growth
potency of the uterine smooth muscle. Autocrine pro-
cesses of BDNF seem not to be involved, because the
myometrium was completely negative for BDNF mRNA.
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Paracrine actions of BDNF, however, have to be consid-
ered not only on uterine smooth muscle cells, but also on
the squamous epithelium of the portio, because BDNF
has been demonstrated recently to promote keratinocyte
proliferation via trkB.70

In summary, we have shown the extensive cellular
BDNF expression in non-neuronal innervation targets of
adult murine viscera. Non-neuronal tissues expressing
BDNF did not display BDNF receptors and revealed no
architectural changes in BDNF2/2 mice. The surpris-
ingly high concentrations of BDNF protein in certain in-
ternal organs suggest that this protein probably also
regulates functional properties of adult PNS neurons in-
nervating the viscera.
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